A Reusable, Open Source Tool Chain for Building Relational Databases from XML Sources

Kam D. Dahlquist
Department of Biology

John David N. Dionisio
Department of Electrical Engineering & Computer Science

Loyola Marymount University

XMLPipeDB
http://xmlpipedb.cs.lmu.edu

BOSC
August 5, 2006
Outline

• Process
 -- interdisciplinary collaboration
 -- open source pedagogy

• Motivation
 -- GenMAPP
 -- Project requirements

• XMLPipeDB Implementation
 -- XSD-to-DB
 -- UniProtDB and GODB
 -- XMLPipeDB Utilities
 -- GenMAPP Builder

• Future Directions
CMSI 698: Special Studies in Bioinformatics

• Team-taught by a biologist and a computer scientist

• Enrollment in Spring 2006:
 -- eight students from Master’s degree program in Computer Science
 -- several coming from aerospace industry
 -- none with more than college-level introductory biology

• Project-based class began development of XMLPipeDB

• XMLPipeDB development continued by four students in summer session course entitled Open Source Software Development Workshop

• Both courses used the open source curricular framework embraced by the Computer Science Department
Recourse: An Open Source Culture in the Undergraduate Computer Science Curriculum
http://recourse.cs.lmu.edu/

Motivation: the disconnect between undergraduate computer science training and expectations/skill sets required in industry

<table>
<thead>
<tr>
<th>Undergraduate Training</th>
<th>Industry Expectation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Work alone</td>
<td>Work in a team</td>
</tr>
<tr>
<td>“Toy” programs and algorithms</td>
<td>Large, modular project</td>
</tr>
<tr>
<td>Throwaway code</td>
<td>Code longevity (for better or worse)</td>
</tr>
</tbody>
</table>
Open Source Teaching Framework

Source Code:
• All code resides in a centralized, public repository
• As much as possible, everyone’s code is visible to everyone else for code review or team fixing
• No code is thrown away, it remains available to future “generations”

Quality & Community:
• Documentation, inline and online
• Automated tests
• Constructive code review, beyond “does it work?”
• Long-term projects release early, release often
• Form collaborative communities among faculty, students, classes, and projects
“CourseForge”
A Hardware + Software Infrastructure for Supporting the Teaching Framework

• Certain teaching elements are impractical without some degree of automation

• “CourseForge” is currently under development

• Derived from open source software, delivered as open source software — the system will interoperate with existing open source tools

• Our course used SourceForge.net and later added a Wiki hosted by the Computer Science Department
XMLPipeDB Project Management: Lessons Learned

• Students on the project had varying levels of maturity, knowledge, and skill coming into the project
 -- some naturally took on a leadership role
 -- some hung back or did the minimum required to get by

• Needed to increase communication and sense of team
 -- students preferred to interact with faculty for questions, rather than each other
 -- bug trackers and developer’s forum used only sporadically
 -- implemented weekly reports on Wiki to increase accountability

• [SourceForge servers were frequently down during class]

• 6 months from conception to product

• Even the weakest student contributed useable code
Outline

• Process
 -- interdisciplinary collaboration
 -- open source pedagogy

• Motivation
 -- GenMAPP
 -- Project requirements

• XMLPipeDB Implementation
 -- XSD-to-DB
 -- UniProtDB and GODB
 -- XMLPipeDB Utilities
 -- GenMAPP Builder

• Future Directions
How GenMAPP Works
http://www.GenMAPP.org

- Graphics tools make MAPPs that store gene IDs and vector coordinates for all graphical objects

- Separate Expression Dataset files store data and color-coding instructions

- Gene Databases store IDs, annotation, and hyperlinks to public gene and protein databases

- Stand-alone program implemented in Visual Basic, accessory files are Microsoft Access databases
MAPPFinder Determines Which GO Terms Are Overrepresented in a GenMAPP Expression Dataset

Hundreds of genes meeting the criterion for a meaningful gene expression change

Gene Ontology process, component, and function terms

Calculate % genes changed per GO term

List of Gene Ontology terms ranked by p value
Maintaining and Updating GenMAPP Gene Databases has been a Bottleneck for Development

- Microarrays use different gene ID systems for annotation; users want as much information as possible.

- We need to capture and reliably relate gene data from different sources and keep the data updated.

- Gene Database design is data-driven; it tells GenMAPP what gene ID systems and relationships are present.

- Current GenMAPP Gene Databases are built from Ensembl as the main data source.
 -- limited to (mostly) animal species
 -- sensitive to changes in flat file formats
XMLPipeDB: A Reusable, Open Source Tool Chain for Building Relational Databases from XML Sources

Requirements:

• to create Gene Databases for other species (bacteria/plants) using UniProt as the main data source
• to be robust to changes in source file formats
• to use XML sources wherever possible
• to take advantage of existing open source tools
• to limit the manual manipulation of the data

First task was to build a GenMAPP Gene Database for *Escherichia coli* K12
NOTE: Some Relations tables are not shown. All possible pairwise Relations tables exist between Proper ID systems and between Proper and Improper ID systems, but not between Improper ID systems (i.e., Proper-Proper, Proper-Improper, but NOT Improper-Improper).
Data Sources Required for a “Minimal” GenMAPP Gene Database

UniProt
• UniProt complete proteome sets for many species are made available as XML downloads by the Integr8 resource

Gene Ontology
• OBO XML format

UniProt to GO associations
• GOA downloads also available at Integr8
Outline

• Process
 -- interdisciplinary collaboration
 -- open source pedagogy

• Motivation
 -- GenMAPP
 -- Project requirements

• XMLPipeDB Implementation
 -- XSD-to-DB
 -- UniProtDB and GODB
 -- XMLPipeDB Utilities
 -- GenMAPP Builder

• Future Directions
XMLPipeDB Use Case Diagram

XSD-to-DB
Convert XSD File to Java and SQL

produces

GenMAPP Builder
UniProtDB, GO DB
Interact with UniProt or GO Data

produces

XMLPipeDB Utilities
Import XML Data into Database
Configure Database (URL, Driver, User, etc.)
Ad-hoc SQL or HQL Query on Database
Export UniProt and GO Data into GenMAPP Gene Database

produces

GenMAPP Gene Database
Use with GenMAPP

GenMAPP User

Software Developer

GenMAPP Gene Database Producer
XMLPipeDB Use Case Diagram

XSD-to-DB
- Convert XSD File to Java and SQL

produces

GenMAPP Builder
- UniProtDB, GO DB
 - Interact with UniProt or GO Data

GenMAPP Gene Database
- Use with GenMAPP

Software Developer

produces

GenMAPP Gene Database Producer

XMLPipeDB Utilities
- Import XML Data into Database
- Configure Database (URL, Driver, User, etc.)
- Ad-hoc SQL or HQL Query on Database
- Export UniProt and GO Data into GenMAPP Gene Database

GenMAPP User
XSD-to-DB Stands on the Shoulders of other Open Source Tools

XML

↓

 JAXB

↓

 Java

↓

 Hibernate

↓

 Relational Database

PostgreSQL

HyperJaxB2

Produces:
Java source code
SQL DDL file
Hibernate mappings
Apache Ant build.xml
UniProtDB and GODB Required Only Nominal Post-processing

• Naming: XSD or DTD definitions might use names that are SQL reserved words and thus cannot be used as table or attribute names
 -- In UniProtDB, “end” was renamed to “endPosition”
 -- In GODB, “to” was renamed to “to_”

• Datatypes: Some XSD datatypes are not easily supported in SQL
 -- In UniProtDB, the definition for citationType was changed from month/year to string
 -- Some definitions were changed from SQL varchar(255) to varchar(unspecified length)
XMLPipeDB Use Case Diagram

XSD-to-DB
Convert XSD File to Java and SQL

Software Developer
produces
GenMAPP Builder
UniProtDB, GODB
Interact with UniProt or GO Data

GenMAPP Gene Database Producer
produces
XMLPipeDB Utilities
Import XML Data into Database
Configure Database (URL, Driver, User, etc.)
Ad-hoc SQL or HQL Query on Database

GenMAPP Gene Database
Use with GenMAPP

GenMAPP User
“Rule of Three”
XMLPipeDB Utilities Library is a Suite of Java Classes that Provide Functions Common to Most XMLPipeDB Database Applications

• Loading of XML files into Java objects

• Saving XML-derived Java objects to a relational database

• Rudimentary query and retrieval of Java objects from the relational database
 -- HQL (Hibernate Query Language), SQL query
 -- object browser that shows results of query

• Configuring a client application to communicate with a relational database
XMLPipeDB Use Case Diagram

XSD-to-DB
- Convert XSD File to Java and SQL

produces

GenMAPP Builder
- UniProtDB, GO DB
 - Interact with UniProt or GO Data

Software Developer

XMLPipeDB Utilities
- Import XML Data into Database
- Configure Database (URL, Driver, User, etc.)
- Ad-hoc SQL or HQL Query on Database
- Export UniProt and GO Data into GenMAPP Gene Database

GenMAPP Gene Database
- Use with GenMAPP

GenMAPP Gene Database Producer

produces

GenMAPP User
GenMAPP Builder Interacts with PostgreSQL in Three Ways

- Java Applications
- SQL
- ORM (Hibernate)
- XMLPipeDB Utilities (reusable library)
GenMAPP Builder Uses the XMLPipeDB Utilities Library to Configure the PostgreSQL Database

...and import XML
GenMAPP Builder Has Customized Profiles
-- for each Primary Data Source (e.g. UniProt)
-- for each species (e.g. Escherichia coli)
The User Chooses Which Gene ID Systems and Relations to Export to the Gene Database

Building the *E. coli* K12 Gene Database takes ~2 hours
Take-home Messages

• Used an Open Source paradigm for Master’s level course, resulting in useful bioinformatics software
 -- software is NOT perfect, but acceptable for now
 -- students will flow in and out of the project

• GenMAPP Builder can make Gene Databases for any species represented in UniProt
 -- produced a Gene Database for *Escherichia coli* K12

• XMLPipeDB is a general set of tools that can be re-used for other bioinformatics and non-bioinformatics applications
 -- LGPL license
 -- we have not experienced a change to an XSD yet
Future Directions for XMLPipeDB

Near Term:
• Clean-up internal design and GUI for GenMAPP Builder
• Produce Gene Databases for additional species
• Add data sources (TIGR CMR, NCBI Gene, Affymetrix)
• Further automate building databases and data integrity checks

Longer Term:
• Use XML sources to build MAPPs for GenMAPP e.g., KEGG-ML, BioPAX
• Applications that we haven’t imagined yet
Kam D. Dahlquist
http://myweb.lmu.edu/kdahQUI
kdahlquist@lmu.edu

John David N. Dionisio
http://myweb.lmu.edu/dondi
dondi@lmu.edu

ISMB Poster B-36

Special Thanks
GenMAPP.org Development Group
Caskey L. Dickson, Wesley T. Citti
NSF CCLI Program (http://recourse.cs.lmu.edu)